
A Tour of the Hive Implant
A Programmer’s Perspective

Juan Tapiador, UC3M



Vaults 7 and 8





Wikileaks, 2017

Vault 7 series (24 parts)

- Year Zero, Dark Matter, Marble, Grasshopper, Hive, Weeping Angel Scribbles, Archimedes, 
AfterMidnight/Assassin, Athena, Pandemic, Cherry Blossom, Brutal Kangaroo, Elsa, 
OutlawCountry, BothanSpy, Highrise, UCL/Raytheon, Imperial, Dumbo, CouchPotato, 
ExpressLane, Angelfire, Protego



Wikileaks, 2017

9 November 2017

Vault 8 (series? Not really)

- Source code for (some? all?) projects 
in Vault 7

- Only Vault 8 release was Hive 
- Release includes

- Code repository with development logs
- User’s Guide
- Engineering Development Guide



I believe Hive is interesting because

- It was (presumably) developed for a high-profile TA
- It showcases some elemental second-stage implant techniques
- It is really simple yet it contains some interesting functionality
- It is easy to analyze even for a beginner
- It is full of insights that you do not typically read in an analysis report
- It can demystify preconceived ideas about sophistication of these tools
- It can spark curiosity about how these artifacts work



Hive architecture



CONOPS

- Operators need to communicate with implant in a secure manner, meaning
- Communication must be authenticated and encrypted
- Communication does not draw attention
- If implant gets discovered, attributing it is difficult by looking just at the comms

- Reusable infrastructure for multiple operations
- Using servers rented from commercial hosting providers
- One or more registered domains/VPS per operation managing implants on target computers

- Implant
- Multi-architecture, multi-OS
- Simple functionalities: beaconing, remote shell
- Self-delete



Source: Hive Infrastructure Configuration Guide 

Covert domain delivers 
valid content if somebody 
browses it by chance

Honeycomb manages 
traffic from authenticated 
implants (see next slide)

Authenticates implants 
and relais VPS traffic 
depending on outcome 



Source: Hive Infrastructure Configuration Guide 



The implant



Hive repository & the server



Preliminaries

Multiple programmers



Preliminaries

Multiple programmers

- Different stylometry, even within the same source code file
- e.g. markTermination() vs. shred_file() in self_delete.c

- Obvious in some comments



Preliminaries

Multiplatform

Linux, Solaris, MikroTik, Windows for several architectures (x86, SPARC, 
MIPS-BE, MIPS-LE, PowerPC)



Preliminaries

Debug code

DL(l, x) macro, defined in common/debug/debug.h:24



Preliminaries

Ongoing, evolving, unfinished – like all software



Preliminaries

Implant key

Double SHA-1 of key phrase.

Key phrase can be read from a file or entered on the command line as an arg

main.c:298



Running the implant server/main.c



Two basic functions: beacons & interactive shell 



main.c (simplified) server/main.c



main.c (simplified) server/main.c



main.c (simplified) server/main.c



main.c (simplified) server/main.c



Beacons



beacon_start (simplified) server/beacon.c



void *beacon(void *param) server/beacon.c



void *beacon(void *param) server/beacon.c



Large function populating the beacon with host data and sending (SSL) it

Beacon data server/beacon.c



The natural way.

Other host data obtained differently.

Running commands

server/run_command.c



Beaconing
protocol
(simplified)

server/beacon.c



Triggers



Triggers

- Signal to wake up the implant and establish an interactive session
- 7 types

- Once the implant gets a valid trigger, it pulls the callback IP address and port 
from the packet, waits a little bit, and establishes a TLS session

icmp ping-request
ping-reply
icmp-error

5-6 packets
5-6 packets
1 packet

udp dns-request
tftp-wrq
raw-udp

1 packet
1 packet
1 packet any port

tcp raw-tcp 1 packet (+ tcp 
handshake)

any open port



Triggers up to version 2.5

Common trigger format



TriggerListen() - simplified server/trigger_listen.c



TriggerCallbackSession() server/trigger_callback_session.c



StartClientSession()

server/client_session.c

Simplified



Trigger Resignaturing



Detectability issues in triggers up to version 2.5

- DNS, ICMP, and TFTP can be easily signatured
- XOR key is always zero!

- TCP and UDP triggers do not adhere to to their respective protocol standards
- TCP and UDP trigger have consistent packet sizes

- 74-74-66-70-66-466-66-66-54 immutable sequence
- The 466-byte packet size stands out

- Solutions (version 2.6)
- DNS and TFPT hard to fix (covers with little room for inserting triggers)
- ICMP, TCP, and UDP triggers resignatured



Raw TCP/UDP trigger in Hive version 2.6.3



More issues

- ICMP triggers require hived to run with root privileges
- ICMP triggers often get filtered out

- Some ISPs block ICMP error messages
- Also some default firewall policies

- Which interface should you listen to?
- Linux, MikroTik: all of them
- Windows: whatever it says its the primary network iface
- Solaris: you have to pick one

- UDP triggers and Windows 2000
- Microsoft KB Archive/890856



Extra OPSEC



client.crt

- Implants authenticate using 
TLS Optional Client 
Authentication

- Weird design choice!

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 2 (0x2)
        Signature Algorithm: sha1WithRSAEncryption
        Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc, OU=Certification 
Services Division, CN=Thawte Premium Server CA/emailAddress=premium-server@thawte.com
        Validity
            Not Before: Sep 30 20:27:29 2010 GMT
            Not After : Sep 24 20:27:29 2035 GMT
        Subject: C=RU, O=Kaspersky Laboratory, CN=www.kaspersky.com
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
            RSA Public Key: (2048 bit)
                Modulus (2048 bit):
                    00:aa:56:72:ef:c4:8c:9a:47:d9:6f:b5:a8:9e:6f:
                    19:25:98:81:72:40:1c:7f:08:32:6d:d1:93:32:5b:
                    ee:33:30:01:ed:29:09:68:af:fc:1e:4c:b3:b8:b9:
                    4b:99:d9:9f:9b:2a:60:55:af:e1:e4:69:5b:b3:b3:
                    c9:2e:07:9e:49:0f:dd:35:da:43:ca:11:54:da:6e:
                    99:7e:cf:4a:59:1d:16:8f:4d:e9:0d:d6:14:e7:f7:
                    fd:0b:d1:9e:9b:e9:89:14:e3:df:89:e5:03:55:96:
                    52:85:bc:69:9d:2d:bb:2c:11:cf:63:b0:46:3a:28:
                    4e:d0:eb:94:32:f5:99:d9:8c:93:b1:2b:ad:e5:cf:
                    00:d8:3b:81:b0:8a:e1:ad:20:58:57:4d:39:5e:68:
                    44:d4:7c:75:b5:8a:fa:91:6d:0d:94:62:07:f6:e3:
                    95:a4:ea:75:29:3c:cd:55:e9:29:53:bf:8e:0d:f6:
                    fd:65:6c:14:a5:c0:83:2b:67:07:ea:98:48:08:55:
                    99:91:91:79:5d:dd:0f:96:b3:fe:2c:18:38:37:00:
                    02:bc:07:9f:c2:a3:06:8d:1d:eb:22:f0:0e:99:05:
                    19:d3:e0:fc:8e:cc:b4:f8:83:51:e5:dc:64:82:a6:
                    d7:5d:75:c6:bd:a4:d4:de:df:b6:a1:a9:0c:c2:d2:
                    ce:7f
                Exponent: 65537 (0x10001)
        X509v3 extensions:
            X509v3 Basic Constraints: 
                CA:FALSE
            X509v3 Subject Key Identifier: 
                B0:56:99:81:7C:87:D0:3F:10:CF:99:0E:6E:9E:39:B4:1E:C5:53:B0
            X509v3 Authority Key Identifier: 
                DirName:/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting 
cc/OU=Certification Services Division/CN=Thawte Premium Server 
CA/emailAddress=premium-server@thawte.com
                serial:01

    Signature Algorithm: sha1WithRSAEncryption
        20:a7:6f:21:a5:0a:5f:a7:b5:c6:95:fe:25:d7:4a:49:a1:16:
        50:99:47:aa:14:10:30:2f:58:f5:36:b6:b0:de:1d:e8:61:5d:
        70:4a:73:95:85:9f:fa:02:7c:cd:e4:3a:6f:1c:cd:9b:de:eb:



Obfuscation of function names server/function_strings.h



Obfuscation of function names

https://docs.oracle.com/cd/E86824_01/html/E54763/strip-1.html 

server/function_strings.h

https://docs.oracle.com/cd/E86824_01/html/E54763/strip-1.html


Removal of command line arguments server/main.c



Removal of command line arguments server/main.c



Self-delete server/self_delete.c



The premature death of implants v2.5

- Operators discovered that some implants v2.5 were self-destroying 
prematurely

- Why?
- (current time - time of last contact) > self-delete threshold
- Actually the difference was VERY large

- Cause

?



The premature death of implants v2.5

- Operators discovered that some implants v2.5 sere self-destroying 
prematurely

- Why?
- (current time - time of last contact) > self-delete threshold
- Actually the difference was VERY large

- Cause
- Some systems do not have stable or reliable clocks. Many scenarios:

- Clock back to epoch (00:00:00, January 1, 1970) after reboot
- On some Windows, uptime reset to zero if the system has been up for 49 days
- Some devices do not sync with NTP server after reboot
- Some sync with NTP but a while after reboot (race condition here)

- Time difference was cast from int to unsigned long int
- Fix never implemented



That’s a wrap for today



Parting thoughts

- Do you want to try it yourself?
- Fork the repo
- Experiment with it
- Try new ideas

- One key takeaway
- Basic functionality is easy (there are 10s of C2 frameworks)
- Details make a big difference
- Some of them are complicated

- We are no longer in 2010
- Yet xddr33 (360 netlab, January 2023)
- See tools and ops by Longhorn / APT-C-39 / The Lamberts



Thank you for listening.

Questions? Comments? Thoughts?


