
Speaker Guide

Everything you need to record a great 

presentation for the inaugural eBPF Summit

Marcos Bajo – Juan Tapiador

ANALYSIS OF 
OFFENSIVE 
CAPABILITIES OF 
eBPF AND 
IMPLEMENTATION OF 
A ROOTKIT

@h3xduck
@0xjet

github.com/h3xduck/TripleCross



INTRODUCTION
01 • Rootkits

• Ebpf rootkits
• Project objectives

OFFENSIVE eBPF
02 • Tracing programs

• Memory corruption
• Network programs

ROOTKIT DESIGN
03 • Library injection

• Privilege escalation
• Execution hijacking
• Backdoor and C2
• Rootkit persistence
• Rootkit stealth

DEFENCE AGAINST 
THE DARK ARTS04
• Defence techniques
• Final remarks

TABLE OF CONTENTS

eBPF Summit
August 28-29, 2022



INTRODUCTION
01 • Rootkits

• Ebpf
• Previous research
• Project objectives
• Project benefits

eBPF Summit
August 28-29, 2022



PROJECT GOALS

LINUX KERNEL 
MODULES (LKMs)

• Usually forbidden at critical
systems

• NOT secure
• Can be used for building

rootkits

eBPF

• Usually available by default
• Is it secure?
• Could it be used for building

rootkits?

~/ INTRODUCTION / GOALS



ROOTKITS

BACKDOOR

Remote Command and 
Control (C2)

STEALTH

Hide files and activity
from user

~/ INTRODUCTION / ROOTKITS

Access through the
network

Avoid monitoring
software



BPF/eBPF ROOTKITS ARE 
ALREADY HERE

SYMBIOTE
Implant targets 
financial sector 

in Latin America

2022
BVP47
NSA backdoor 
targets military and 
telecommunication 
systems

2022

BPFDoor
China-based 
actor targets 
telecommunication 
systems

2021

~/ INTRODUCTION / eBPF ROOTKITS



OFFENSIVE eBPF
• Tracing programs
• Memory corruption
• Network programs

eBPF Summit
August 28-29, 2022

02



VIRTUAL MEMORY

Kernel
reserved

Program
instructions

Dynamically
allocated data

Local variables, 
parameters, 
return addresses

~/ OFFENSIVE EBPF / TRACING



VIRTUAL MEMORY

Kernel
reserved

Program
instructions

Dynamically
allocated data

Local variables, 
parameters, 
return addresses

~/ OFFENSIVE EBPF / TRACING



VIRTUAL MEMORY

Kernel
reserved

Program
instructions

Dynamically
allocated data

Local variables, 
parameters, 
return addresses

~/ OFFENSIVE EBPF / TRACING



eBPF TRACING

~/ OFFENSIVE EBPF / TRACING



READ ONLY ACCESS

bpf_probe_read_kernel()

Read data at the kernel space

bpf_probe_read_user()

Read data at the user space

~/ OFFENSIVE EBPF / TRACING



OUT OF BOUNDS READ

~/ OFFENSIVE EBPF / TRACING



OUT OF BOUNDS READ

~/ OFFENSIVE EBPF / TRACING



USER SPACE WRITING

bpf_probe_write_user()

Write data at the user space
Memory must be writeable

~/ OFFENSIVE EBPF / TRACING



MEMORY CORRUPTION

~/ OFFENSIVE EBPF / TRACING



eBPF NETWORKING

Ø Dropping packets.

Ø Modifying packets.

Ø Cannot generate
new packets.

~/ OFFENSIVE EBPF / NETWORKING



eBPF NETWORKING

Ø Dropping packets.

Ø Modifying packets.

Ø Cannot generate
new packets.

~/ OFFENSIVE EBPF / NETWORKING



eBPF NETWORKING

Ø Dropping packets.

Ø Modifying packets.

Ø Cannot generate
new packets.

~/ OFFENSIVE EBPF / NETWORKING



eBPF NETWORKING

Ø We can create
arbitrary new 
packets

~/ OFFENSIVE EBPF / TRACING



ROOTKIT DESIGN
• Library injection
• Privilege escalation
• Execution hijacking
• Backdoor and C2
• Rootkit persistence
• Rootkit stealth

eBPF Summit
August 28-29, 2022

03



LIBRARY INJECTION

~/ ROOTKIT DESIGN / LIBRARY INJECTION



NORMAL EXECUTION

~/ ROOTKIT DESIGN / LIBRARY INJECTION



GOT HIJACKING

~/ ROOTKIT DESIGN / LIBRARY INJECTION



5 STAGES TECHNIQUE

~/ ROOTKIT DESIGN / LIBRARY INJECTION



5 STAGES TECHNIQUE

1. Stack scanning

~/ ROOTKIT DESIGN / LIBRARY INJECTION



5 STAGES TECHNIQUE

1. Stack scanning

2. Locate key
functions at glibc

~/ ROOTKIT DESIGN / LIBRARY INJECTION



5 STAGES TECHNIQUE

1. Stack scanning

2. Locate key
functions at glibc

3. Write shellcode

~/ ROOTKIT DESIGN / LIBRARY INJECTION



5 STAGES TECHNIQUE

1. Stack scanning

2. Locate key
functions at glibc

3. Write shellcode

4. Overwrite GOT

~/ ROOTKIT DESIGN / LIBRARY INJECTION



5 STAGES TECHNIQUE

1. Stack scanning

2. Locate key
functions at glibc

3. Write shellcode

4. Overwrite GOT

5. Exploitation

~/ ROOTKIT DESIGN / LIBRARY INJECTION



GOT HIJACKING

Are there protections
against this attack?

How novel is this attack?
Ø ASLR, PIE, Full RELRO, DEP/NX
Ø All bypassed

Ø Never done before with eBPF
Ø Tested in Ubuntu 21.04
Ø Can be updated to any Linux 

version with relatively low effort

~/ ROOTKIT DESIGN / LIBRARY INJECTION



PRIVILEGE ESCALATION

SUDO: Access 
control in Linux
Ø Configuration in /etc/sudoers

Malicious /etc/sudoers
Ø Malicious kprobe/tracepoint 

program
Ø Any rootkit program can be 

run with privileged access

~/ ROOTKIT DESIGN / PRIVILEGE ESCALATION



EXECUTION HIJACKING

Ø We can run malware secretly
every time a program is executed.

Ø eBPF in principle cannot execute
programs.

Attack implications:

~/ ROOTKIT DESIGN / EXECUTION HIJACKING



BACKDOOR & C2 SYSTEM

~/ ROOTKIT DESIGN / BACKDOOR & C2



BACKDOOR & C2 SYSTEM

Ø Backdoor 
triggers

Ø Bypass firewall 
protections

Ø Indicate actions
to execute

~/ ROOTKIT DESIGN / BACKDOOR & C2



BACKDOOR & C2 SYSTEM

Ø Backdoor 
triggers

Ø Bypass firewall 
protections

Ø Indicate actions
to execute

~/ ROOTKIT DESIGN / BACKDOOR & C2



BACKDOOR & C2 SYSTEM

Ø Reverse shell

Ø Plaintext
pseudo-shell

Ø Encrypted
pseudo-shell

Ø Phantom shell

~/ ROOTKIT DESIGN / BACKDOOR & C2



ROOTKIT PERSISTENCE

Ø Cron malicious file 
for installation
persistence

Ø Sudo malicious file 
for privileges
persistence

~/ ROOTKIT DESIGN / PERSISTENCE



Listing files and 
directories
Ø Use of ls command
Ø Calls sys_getdents internally

Malicious
sys_getdents
Ø All rootkit files and directories 

are invisible
Ø The persistence files are 

invisible

HIDING ROOTKIT FILES

~/ ROOTKIT DESIGN / STEALTH



DEFENCE 
AGAINST THE 
DARK ARTS

• Defence techniques
• Final remarks

04

eBPF Summit
August 28-29, 2022



DEFENCE TECHNIQUES

Network monitoring
Ø Detect suspicious

communications
Ø Firewalls at the endpoint can 

be deceived

~/ DEFENCE TECHNIQUES



DEFENCE TECHNIQUES

Monitor eBPF
Ø Publicly-available eBPF tools

monitor bpf() activity

https://github.com/libbpf/bpftool
https://github.com/Gui774ume/ebpfkit-monitor

Network monitoring
Ø Detect suspicious

communications
Ø Firewalls at the endpoint can 

be deceived

~/ DEFENCE TECHNIQUES



DEFENCE TECHNIQUES

Monitor eBPF
Ø Publicly-available eBPF tools

monitor bpf() activity

Lowest-privilege eBPF
Ø Rootkits require privileged eBPF
Ø Solution: eBPF capabilities

Ø CAP_BPF
Ø CAP_NET_ADMIN
Ø CAP_PERFMON 
Ø CAP_SYS_ADMIN

https://github.com/libbpf/bpftool
https://github.com/Gui774ume/ebpfkit-monitor

Network monitoring
Ø Detect suspicious

communications
Ø Firewalls at the endpoint can 

be deceived

~/ DEFENCE TECHNIQUES



DEFENCE TECHNIQUES

Signed eBPF
Ø Only trusted and signed

eBPF programs can be run in 
the kernel.

https://lwn.net/Articles/853489/

~/ DEFENCE TECHNIQUES



DON’T LET YOUR GUARD 
DOWN!

• eBPF restricts userland and kernel capabilities, 
but malware can find ways around them.

• Once the rootkit is installed, it is posible to avoid
any further monitoring or detection efforts.

• eBPF malware is a reality.

~/ FINAL REMARKS



Q&A on 
Slack!

Marcos Bajo (@h3xduck) 
Juan Tapiador (@0xjet)

eBPF Summit
August 28-29, 2022

github.com/h3xduck/TripleCross


