
A LOOK INTO 30 YEARS OF MALWARE DEVELOPMENT
FROM A SOFTWARE METRICS PERSPECTIVE

Alejandro Calleja1, Juan Tapiador1, Juan Caballero2

1 Universidad Carlos III de Madrid, Spain
2 IMDEA Software Institute, Spain

RAID 2016 - 19TH INTERNATIONAL SYMPOSIUM ON RESEARCH IN ATTACKS, INTRUSIONS AND DEFENSES

OVERVIEW

OVERVIEW

▸ The malware problem

- By the numbers: 1.7B known malware samples, 317M
new samples discovered in 2014 (Symantec, 2015)

- A commodity

OVERVIEW

▸ The malware problem

- By the numbers: 1.7B known malware samples, 317M
new samples discovered in 2014 (Symantec, 2015)

- A commodity

▸ Increasing access to malware source code

OVERVIEW

▸ The malware problem

- By the numbers: 1.7B known malware samples, 317M
new samples discovered in 2014 (Symantec, 2015)

- A commodity

▸ Increasing access to malware source code

▸ What can we learn from it?

- This work: measurements of malware as a software
product and its evolution over the last 30 years

OUTLINE OF THE TALK

1. Software metrics

2. Our dataset

3. Analysis

4. Conclusions

SOFTWARE METRICS

SOFTWARE METRICS

▸ Measuring software size

SOFTWARE METRICS

▸ Measuring software size

- SLOC (Source Lines Of Code)

SOFTWARE METRICS

▸ Measuring software size

- SLOC (Source Lines Of Code)

- FP (Function Points)

SOFTWARE METRICS

▸ Measuring software size

- SLOC (Source Lines Of Code)

- FP (Function Points)

Programming language SLOC/FP
ASP / ASP.Net 69
Assembly 119
Shell / DOS Batch 128
C 97
C# 54
C++ 50
HTML / CSS / XML / XSLT 34

Programming language SLOC/FP
Java 53
Javascript 47
PHP 67
Pascal 90
Python 24
SQL / make 21
Visual Basic 42

Table 1: SLOC to function-point ratios for various programming languages.

Overall, backfiring is useful as SLOC counts are not available early enough in the re-
quirements phase for estimating purposes. Also, the resulting UFC measure is a more
normalized measure of the source code size.

2.2 Effort Estimation: The Constructive Cost Model (COCOMO)

One of the core problems in software engineering is to make an accurate estimate of the
effort required to develop a software system. This is a complex issue that has attracted
much attention since the early 1970s, resulting in various techniques that approach the
problem from different perspectives [34]. A prominent class of such techniques are
the so-called algorithmic cost modeling methods, which are based on mathematical
formulae that provide cost figures using as input various measures of the program’s
size, organizational practices, and so on.

One of the best known algorithmic software cost estimation methods is the Con-
structive Cost Model (COCOMO) [12]. COCOMO is an empirical model derived from
analyzing data collected from a large number of software projects. These data were used
to find, through basic regression, formulae linking the size of the system, and project
and team factors to the effort to develop it. As in most algorithmic cost models, the
number of lines of source code (SLOC) in the delivered system is the basic metric used
in cost estimation. Thus, the basic COCOMO equation for the effort (in man-months)
required to develop a software system is

E = ab(KLOC)bb , (1)

where KLOC is the estimated number of SLOC expressed in thousands. The develop-
ment time (in months) is obtained from the effort as

D = cbE
db , (2)

and the number of people required is just

P =
E

D
. (3)

In the equations above, the coefficients ab, bb, cb, and db are empirical estimates depen-
dent on the type of project (see Table 2). COCOMO considers three types of projects:

4

“Backfiring”

SOFTWARE METRICS

SOFTWARE METRICS

▸ Estimating effort

SOFTWARE METRICS

▸ Estimating effort

- COCOMO (Constructive Cost Model), 1980s 
Basic, Intermediate, Advanced

SOFTWARE METRICS

▸ Estimating effort

- COCOMO (Constructive Cost Model), 1980s 
Basic, Intermediate, Advanced

Programming language SLOC/FP
ASP / ASP.Net 69
Assembly 119
Shell / DOS Batch 128
C 97
C# 54
C++ 50
HTML / CSS / XML / XSLT 34

Programming language SLOC/FP
Java 53
Javascript 47
PHP 67
Pascal 90
Python 24
SQL / make 21
Visual Basic 42

Table 1: SLOC to function-point ratios for various programming languages.

Overall, backfiring is useful as SLOC counts are not available early enough in the re-
quirements phase for estimating purposes. Also, the resulting UFC measure is a more
normalized measure of the source code size.

2.2 Effort Estimation: The Constructive Cost Model (COCOMO)

One of the core problems in software engineering is to make an accurate estimate of the
effort required to develop a software system. This is a complex issue that has attracted
much attention since the early 1970s, resulting in various techniques that approach the
problem from different perspectives [34]. A prominent class of such techniques are
the so-called algorithmic cost modeling methods, which are based on mathematical
formulae that provide cost figures using as input various measures of the program’s
size, organizational practices, and so on.

One of the best known algorithmic software cost estimation methods is the Con-
structive Cost Model (COCOMO) [12]. COCOMO is an empirical model derived from
analyzing data collected from a large number of software projects. These data were used
to find, through basic regression, formulae linking the size of the system, and project
and team factors to the effort to develop it. As in most algorithmic cost models, the
number of lines of source code (SLOC) in the delivered system is the basic metric used
in cost estimation. Thus, the basic COCOMO equation for the effort (in man-months)
required to develop a software system is

E = ab(KLOC)bb , (1)

where KLOC is the estimated number of SLOC expressed in thousands. The develop-
ment time (in months) is obtained from the effort as

D = cbE
db , (2)

and the number of people required is just

P =
E

D
. (3)

In the equations above, the coefficients ab, bb, cb, and db are empirical estimates depen-
dent on the type of project (see Table 2). COCOMO considers three types of projects:

4

Programming language SLOC/FP
ASP / ASP.Net 69
Assembly 119
Shell / DOS Batch 128
C 97
C# 54
C++ 50
HTML / CSS / XML / XSLT 34

Programming language SLOC/FP
Java 53
Javascript 47
PHP 67
Pascal 90
Python 24
SQL / make 21
Visual Basic 42

Table 1: SLOC to function-point ratios for various programming languages.

Overall, backfiring is useful as SLOC counts are not available early enough in the re-
quirements phase for estimating purposes. Also, the resulting UFC measure is a more
normalized measure of the source code size.

2.2 Effort Estimation: The Constructive Cost Model (COCOMO)

One of the core problems in software engineering is to make an accurate estimate of the
effort required to develop a software system. This is a complex issue that has attracted
much attention since the early 1970s, resulting in various techniques that approach the
problem from different perspectives [34]. A prominent class of such techniques are
the so-called algorithmic cost modeling methods, which are based on mathematical
formulae that provide cost figures using as input various measures of the program’s
size, organizational practices, and so on.

One of the best known algorithmic software cost estimation methods is the Con-
structive Cost Model (COCOMO) [12]. COCOMO is an empirical model derived from
analyzing data collected from a large number of software projects. These data were used
to find, through basic regression, formulae linking the size of the system, and project
and team factors to the effort to develop it. As in most algorithmic cost models, the
number of lines of source code (SLOC) in the delivered system is the basic metric used
in cost estimation. Thus, the basic COCOMO equation for the effort (in man-months)
required to develop a software system is

E = ab(KLOC)bb , (1)

where KLOC is the estimated number of SLOC expressed in thousands. The develop-
ment time (in months) is obtained from the effort as

D = cbE
db , (2)

and the number of people required is just

P =
E

D
. (3)

In the equations above, the coefficients ab, bb, cb, and db are empirical estimates depen-
dent on the type of project (see Table 2). COCOMO considers three types of projects:

4

Programming language SLOC/FP
ASP / ASP.Net 69
Assembly 119
Shell / DOS Batch 128
C 97
C# 54
C++ 50
HTML / CSS / XML / XSLT 34

Programming language SLOC/FP
Java 53
Javascript 47
PHP 67
Pascal 90
Python 24
SQL / make 21
Visual Basic 42

Table 1: SLOC to function-point ratios for various programming languages.

Overall, backfiring is useful as SLOC counts are not available early enough in the re-
quirements phase for estimating purposes. Also, the resulting UFC measure is a more
normalized measure of the source code size.

2.2 Effort Estimation: The Constructive Cost Model (COCOMO)

One of the core problems in software engineering is to make an accurate estimate of the
effort required to develop a software system. This is a complex issue that has attracted
much attention since the early 1970s, resulting in various techniques that approach the
problem from different perspectives [34]. A prominent class of such techniques are
the so-called algorithmic cost modeling methods, which are based on mathematical
formulae that provide cost figures using as input various measures of the program’s
size, organizational practices, and so on.

One of the best known algorithmic software cost estimation methods is the Con-
structive Cost Model (COCOMO) [12]. COCOMO is an empirical model derived from
analyzing data collected from a large number of software projects. These data were used
to find, through basic regression, formulae linking the size of the system, and project
and team factors to the effort to develop it. As in most algorithmic cost models, the
number of lines of source code (SLOC) in the delivered system is the basic metric used
in cost estimation. Thus, the basic COCOMO equation for the effort (in man-months)
required to develop a software system is

E = ab(KLOC)bb , (1)

where KLOC is the estimated number of SLOC expressed in thousands. The develop-
ment time (in months) is obtained from the effort as

D = cbE
db , (2)

and the number of people required is just

P =
E

D
. (3)

In the equations above, the coefficients ab, bb, cb, and db are empirical estimates depen-
dent on the type of project (see Table 2). COCOMO considers three types of projects:

4

(i) Organic projects (small programming team, good experience, and flexible software
requirements); Semi-detached projects (medium-sized teams, mixed experience, and a
combination of rigid and flexible requirements); and (iii) Embedded projects (organic
or semi-detached projects developed with tight constraints).

Software Project ab bb cb db

Organic 2.4 1.05 2.5 0.38
Semi-detached 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32

Table 2: Basic COCOMO coefficients.

The model described above is commonly known as Basic COCOMO and is very
convenient to obtain a quick estimate of costs. A further refinement is provided by
the so-called Intermediate COCOMO. The main difference consists in the addition of
various multiplicative modifiers to the effort estimation (E) that account for attributes of
both the product and the programming process such as the expected reliability, and the
capability and experience of the programmers. Since these are not known for malware,
we we will restrict ourselves to the Basic COCOMO model.

2.3 Source Code Complexity and Maintainability

Software complexity metrics attempt to capture properties related to the interactions
between source code entities. Complexity is generally linked to maintainability, in the
sense that higher levels of complexity might translate into a higher risk of introducing
unintentional interactions and, therefore, software defects [27].

One of the earliest—and still most widely used—software complexity metric is Mc-
Cabe’s cyclomatic complexity [28], often denoted M . The cyclomatic complexity of a
piece of source code is computed from its control flow graph (CFG) and measures the
number of linearly independent paths within it; that is, the number of paths that do not
contain other paths within themselves. Thus, a piece of code with no control flow state-
ments has M = 1. A piece of code with one single-condition IF statement would have
M = 2, since there would be two paths through the code depending on whether the
IF condition evaluates to true or false. Mathematically, the cyclomatic complexity of a
program is given by

M = E �N + 2P, (4)

where E is the number of edges in the CFG, N the number of nodes, and P the number
of connected components. The term “cyclomatic” stems from the connections between
this metric and some results in graph theory and algebraic topology, particularly the so-
called cyclomatic number of a graph, which measures the dimension of the cycle space
of a graph [16].

5

SOFTWARE METRICS

SOFTWARE METRICS

▸ Estimating complexity and maintainability

SOFTWARE METRICS

▸ Estimating complexity and maintainability

- McCabe’s Cyclomatic Complexity

• No. linearly independent paths in the CFG

• Should be <10 for each module

SOFTWARE METRICS

▸ Estimating complexity and maintainability

- McCabe’s Cyclomatic Complexity

• No. linearly independent paths in the CFG

• Should be <10 for each module

- Maintainability Index (MI)

• Value in [0, 100]

• Used by Visual Studio, JSComplexity, Radon

• Not agreed upon thresholds (e.g., VS flags MI < 20)

OUR DATASET

▸ 151 samples of malware source code collected over several months in 2015

▸ Sources:

▸ Malware collection sites (e.g., VX Heaven)

▸ Github

▸ Classical e-zines (e.g., 29A)

▸ Other malware exchange forums available on the web

▸ Original collection contained 210 samples but around 30% didn’t survive:

▸ Turned out to be fake

▸ Couldn’t be compiled & tested

OUR DATASET

Category No. samples
Viruses 92
Worms 33
Trojans 11
RATs 9
MacroViruses 3
Botnets 3

Year No. samples
1975 1
1982 1
1985-1994 28 (~18.5%)
1995-2005 94 (~62.3%)
2006-2015 27 (~17.8%)

ANALYSIS

Source code analytics

Number of files

SLOC count

Density of comments

FP count

Programming languages

Cost estimates

Effort

Development time

Team size

Code quality
Complexity

Maintainability

Comparison with regular software

ANALYSIS

Source code analytics

Number of files

SLOC count

Density of comments

FP count

Programming languages

Cost estimates

Effort

Development time

Team size

Code quality
Complexity

Maintainability

Comparison with regular software

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o

.
fil

e
s

p
e

r
m

a
lw

a
re

 s
o

u
rc

e
 c

o
d

e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L

O
C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o

m
m

e
n

t
to

 c
o

d
e

 r
a

tio
 (

%
)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e

r
m

a
lw

a
re

 s
a

m
p

le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o

.
fil

e
s

p
e

r
m

a
lw

a
re

 s
o

u
rc

e
 c

o
d

e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L

O
C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o

m
m

e
n

t
to

 c
o

d
e

 r
a

tio
 (

%
)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e

r
m

a
lw

a
re

 s
a

m
p

le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o

.
fil

e
s

p
e

r
m

a
lw

a
re

 s
o

u
rc

e
 c

o
d

e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L

O
C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o

m
m

e
n

t
to

 c
o

d
e

 r
a

tio
 (

%
)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e

r
m

a
lw

a
re

 s
a

m
p

le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

Morris Worm (9)

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o

.
fil

e
s

p
e

r
m

a
lw

a
re

 s
o

u
rc

e
 c

o
d

e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L

O
C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o

m
m

e
n

t
to

 c
o

d
e

 r
a

tio
 (

%
)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e

r
m

a
lw

a
re

 s
a

m
p

le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

Morris Worm (9)

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o

.
fil

e
s

p
e

r
m

a
lw

a
re

 s
o

u
rc

e
 c

o
d

e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L

O
C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o

m
m

e
n

t
to

 c
o

d
e

 r
a

tio
 (

%
)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e

r
m

a
lw

a
re

 s
a

m
p

le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

Morris Worm (9)

Beagle (28)

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o

.
fil

e
s

p
e

r
m

a
lw

a
re

 s
o

u
rc

e
 c

o
d

e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L

O
C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o

m
m

e
n

t
to

 c
o

d
e

 r
a

tio
 (

%
)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e

r
m

a
lw

a
re

 s
a

m
p

le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

Zeus (249)
SpyNet (324)

Morris Worm (9)

Beagle (28)

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o

.
fil

e
s

p
e

r
m

a
lw

a
re

 s
o

u
rc

e
 c

o
d

e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L

O
C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o

m
m

e
n

t
to

 c
o

d
e

 r
a

tio
 (

%
)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e

r
m

a
lw

a
re

 s
a

m
p

le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

Zeus (249)
SpyNet (324)

a=1.17 
(2x every 4.5 years)

Morris Worm (9)

Beagle (28)

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o
.
fil

e
s

p
e
r

m
a
lw

a
re

 s
o
u
rc

e
 c

o
d
e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L
O

C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o
m

m
e
n
t
to

 c
o
d
e
 r

a
tio

 (
%

)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e
r

m
a
lw

a
re

 s
a
m

p
le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o
.
fil

e
s

p
e
r

m
a
lw

a
re

 s
o
u
rc

e
 c

o
d
e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L
O

C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o
m

m
e
n
t
to

 c
o
d
e
 r

a
tio

 (
%

)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e
r

m
a
lw

a
re

 s
a
m

p
le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o
.
fil

e
s

p
e
r

m
a
lw

a
re

 s
o
u
rc

e
 c

o
d
e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L
O

C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o
m

m
e
n
t
to

 c
o
d
e
 r

a
tio

 (
%

)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e
r

m
a
lw

a
re

 s
a
m

p
le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o
.
fil

e
s

p
e
r

m
a
lw

a
re

 s
o
u
rc

e
 c

o
d
e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L
O

C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o
m

m
e
n
t
to

 c
o
d
e
 r

a
tio

 (
%

)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e
r

m
a
lw

a
re

 s
a
m

p
le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

GhostRAT (33,170)

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o
.
fil

e
s

p
e
r

m
a
lw

a
re

 s
o
u
rc

e
 c

o
d
e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L
O

C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o
m

m
e
n
t
to

 c
o
d
e
 r

a
tio

 (
%

)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e
r

m
a
lw

a
re

 s
a
m

p
le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

Dexter (2,701)

SpyNet (179,682)

GhostRAT (33,170)

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o
.
fil

e
s

p
e
r

m
a
lw

a
re

 s
o
u
rc

e
 c

o
d
e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L
O

C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o
m

m
e
n
t
to

 c
o
d
e
 r

a
tio

 (
%

)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e
r

m
a
lw

a
re

 s
a
m

p
le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

a=1.16 
(2x every 4.6 years)

Dexter (2,701)

SpyNet (179,682)

GhostRAT (33,170)

ANALYSIS
1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o
.
fil

e
s

p
e
r

m
a
lw

a
re

 s
o
u
rc

e
 c

o
d
e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L
O

C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o
m

m
e
n
t
to

 c
o
d
e
 r

a
tio

 (
%

)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e
r

m
a
lw

a
re

 s
a
m

p
le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

ANALYSIS
1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o
.
fil

e
s

p
e
r

m
a
lw

a
re

 s
o
u
rc

e
 c

o
d
e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L
O

C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o
m

m
e
n
t
to

 c
o
d
e
 r

a
tio

 (
%

)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e
r

m
a
lw

a
re

 s
a
m

p
le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

ANALYSIS
1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o
.
fil

e
s

p
e
r

m
a
lw

a
re

 s
o
u
rc

e
 c

o
d
e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L
O

C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o
m

m
e
n
t
to

 c
o
d
e
 r

a
tio

 (
%

)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e
r

m
a
lw

a
re

 s
a
m

p
le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

OmegaRAT

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o

.
fil

e
s

p
e

r
m

a
lw

a
re

 s
o

u
rc

e
 c

o
d

e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L

O
C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o

m
m

e
n

t
to

 c
o

d
e

 r
a

tio
 (

%
)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e

r
m

a
lw

a
re

 s
a

m
p

le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o

.
fil

e
s

p
e

r
m

a
lw

a
re

 s
o

u
rc

e
 c

o
d

e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L

O
C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o

m
m

e
n

t
to

 c
o

d
e

 r
a

tio
 (

%
)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e

r
m

a
lw

a
re

 s
a

m
p

le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

ANALYSIS

1970 1980 1990 2000 2010 2020

1

10

100

1000

Year

N
o

.
fil

e
s

p
e

r
m

a
lw

a
re

 s
o

u
rc

e
 c

o
d

e

(a)

1970 1980 1990 2000 2010 2020
10

1

10
2

10
3

10
4

10
5

10
6

Year

S
L

O
C

(b)

1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Year

C
o

m
m

e
n

t
to

 c
o

d
e

 r
a

tio
 (

%
)

(c)

1970 1980 1990 2000 2010 2020

10
0

10
1

10
2

10
3

10
4

Year

F
P

 p
e

r
m

a
lw

a
re

 s
a

m
p

le

(d)

Fig. 2: Source code analytics of the malware samples in our dataset. (a) Number of files. (b)
SLOC. (c) Comment-to-code ratios. (d) FP counts. Note that in (a), (b), and (d) the y-axis is
shown in logarithmic scale.

2005 most samples contain several thousands SLOCs, with a few exceptions above
that figure, e.g., Troodon (14,729 SLOC) or Simile (10,917 SLOC). The increase in
SLOC count during this period correlates positively with the number of source code
files and the number of different programming languages used. Finally, a significant
number of samples from 2007 on exhibit SLOC counts in the range of tens of thousands.
For instance, GhostRAT (33,170), Zeus (61,752), KINS (89,460), Pony2 (89,758), or
SpyNet (179,682). Most of such samples correspond to moderately complex malware
projects whose output is more than just one binary. Typical examples include Botnets
or RATs featuring a web-based C&C server, support libraries, and various types of
bots/trojans. There are exceptions, too. For instance, Point-of-Sale (POS) trojans such
as Dexter (2012) and Alina (2013) show relatively low SLOC counts (2,701 and 3,143,
respectively).

10

a=1.19 
(2x every 4 years)

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS

Source code analytics

Number of files

SLOC count

Density of comments

FP count

Programming languages

Cost estimates

Effort

Development time

Team size

Code quality
Complexity

Maintainability

Comparison with regular software

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS

ANALYSIS
1970 1980 1990 2000 2010 2020

10
−1

10
0

10
1

10
2

10
3

Year

E
st

im
a

te
d

 e
ff

o
rt

 (
p

e
rs

o
n

s−
m

o
n

th
)

(a)

1970 1980 1990 2000 2010 2020

0

10

20

30

Year

E
st

im
a

te
d

 d
e

ve
lo

p
m

e
n

t
tim

e
 (

m
o

n
th

s)

(b)

1970 1980 1990 2000 2010 2020

0

5

10

15

20

25

Year

E
st

im
a

te
d

 t
e

a
m

 s
iz

e
 (

p
e

rs
o

n
s)

(c)

Sample Year E D P
Anthrax 1990 1.20 2.68 0.45
Batvir 1994 0.53 1.97 0.27
AIDS 1999 0.31 1.59 0.19
IISWorm 1999 0.55 1.99 0.28
ILOVEYOU 2000 0.58 2.03 0.29
Blaster 2003 1.97 3.24 0.61
Mydoom 2004 11.13 6.25 1.78
Sasser 2004 3.03 3.81 0.80
Zeus 2007 242.85 20.15 12.05
GhostRAT 2007 126.45 15.73 8.04
Tinba 2014 53.13 11.31 4.70
Dendroid 2014 50.20 11.07 4.53

(d)

Fig. 4: COCOMO cost estimators for the malware samples in the dataset. (a) Effort (man-
months). (b) Development time (months). (c) Team size (number of people). (d) Selected ex-
amples with effort (E), development time (D), and number of people (P). Note that in (a) and (b)
the y-axis is shown in logarithmic scale.

the figure increases to 3-4 persons for some samples. Since 2010, a few samples report
person estimates substantially higher. For these data, the linear regression coefficient is
0.234, which roughly translates into an additional team member every 4 years.

Finally, the table in Fig. 4d provides some numerical examples for a selected subset
of samples. For additional details, we refer the reader to the full datasets1 with the raw
data used in this paper.

1 Available at: http://url.anonymized.for.submission

13

ANALYSIS

Source code analytics

Number of files

SLOC count

Density of comments

FP count

Programming languages

Cost estimates

Effort

Development time

Team size

Code quality
Complexity

Maintainability

Comparison with regular software

ANALYSIS

ANALYSIS

ANALYSIS

Source code analytics

Number of files

SLOC count

Density of comments

FP count

Programming languages

Cost estimates

Effort

Development time

Team size

Code quality
Complexity

Maintainability

Comparison with regular software

ANALYSIS

Software Version Year SLOC E D P FP M CR MI
Snort 2.9.8.2 2016 46,526 135.30 16.14 8.38 494.24 3.31 10.32 63.27
Bash 4.4 rc-1 2016 160,890 497.81 26.47 18.81 2,265.35 3.40 17.08 52.42
Apache 2.4.19 2016 280,051 890.86 33.03 26.97 4,520.10 3.02 23.42 61.56
IPtables 1.6.0 2015 319,173 1,021.97 34.80 29.37 3,322.05 3.06 27.33 68.88
Git 2.8 2016 378,246 1,221.45 37.24 32.80 4,996.44 3.37 12.15 41.84
Octave 4.0.1 2016 604,398 1,998.02 44.89 44.51 11,365.09 2.52 27.69 52.42
ClamAV 0.99.1 2016 714,085 2,380.39 47.98 49.61 10,669.97 2.79 33.57 63.87
Cocos2d-x 3.10 2016 851,350 2,863.02 51.47 55.63 16,566.78 2.96 17.55 66.60
gcc 5.3 2015 6,378,290 2,3721.97 114.95 206.37 90,278.41 2.10 31.24 50.57

Table 4: Software metrics for various open source projects. E: COCOMO effort; D: COCOMO
development time; P: COCOMO team size; FP: function points; M: cyclomatic complexity; CR:
comment-to-code ratio; MI: maintainability index.

further investigate this point, we computed the cyclomatic complexities at the function
level; i.e., for all functions of all samples in both datasets. The histograms of the ob-
tained values is shown in Fig. 6. Both distributions are very similar, with a clear positive
skewness. A Chi-squared and two-sample Kolgomorov-Smirnov tests corroborate their
similarity for a significance level of ↵ = 0.05.

More differences appear in terms of maintainability. Up to 12 malware samples
show MI values higher than the highest one for regular software—IPtables, with
MI = 68.88. In general, malware samples (particularly the most recent) seem to have
slightly higher maintainability indexes than regular software. As discussed before, two
notable exception are Cairuh and Hexbot2 with surprisingly low values.

1 2 3 4 5 6 7 8 9

Malware
Regular Software

Cyclomatic Complexity

F
re

q
u
e
n
cy

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Fig. 6: Histograms of the cyclomatic complexity values computed at the function level for both
malware and regular software samples.

16

CONCLUSIONS

▸ Numerical evidence of how malware has become
increasingly complex over the last 30 years:

- Increments of approx. a factor of 10 per decade in
number of files, SLOC and FP counts.

- Development costs: from small projects of 1 person
working 1-2 months to larger programming teams
working 6-8 months (and more).

- Largest malware samples similar in complexity to small
benign products.

- No significant difference in terms of code quality.

CONCLUSIONS

▸ Potential limitations:

- Software metrics, really?

- Dataset quality

▸ Ongoing work:

- Extended dataset

- Code sharing

- Authorship attribution

THANKS!

