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Android Security Model

• App sandboxing at the process and file levels.

� But supports shared UIDs, used extensively by system
applications

• Permissions

� Control access to the platform services and resources

� All-or-nothing (soon to change)

• Code signing

� Used to establish trust relationships between apps

� Same origin policy in app updates

• Modified SELinux

� Policy enforcement is only applied to core system daemons

� Apps run in permissive mode (violations are logged but do
not cause runtime errors)
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Quantifying App Risk

• Are permissions effective to communicate potential risks to the
user? [Felt et al., 2011]

• Risk scoring functions for individual apps

� DroidRisk [Wang et al., 2013]

R(a) =
∑
i

R(pi) =
∑
i

L(pi)I(pi)

� Rarity-based Risk Scores [Gates et al., 2014]

RS(xi) =

M∑
m=1

xi,m · ln
(
N

cm

)

RRS(xi) =

M∑
m=1

xi,m · wm · ln
(
N

cm

)
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Quantifying App Risk

• Evaluation with our dataset:

� 15K goodware apps from Google Play

� 15K malware apps from VirusShare
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The Problem of Malicious Information Flows

• Root cause is that Android’s info security model is too
coarse grained.

� Users grant apps the right to access sensitive info or services.

� An app might need to legitimately access sensitive info, but
only for a specific limited purpose. Android doesn’t support
such fine-grain policies.

� One potential result is leakage of sensitive information.

� Problematic even for apps that are not malicious as they
may suffer from leaks through, e.g., advertisement libraries.

• Information-flow analysis:

� Static approaches.

� Goal is tracking sensitive info through the app by starting at
pre-defined sources and following the data flow until it
reaches a sink.

� Using an accurate runtime execution model is critical, and
this is particularly challenging for Android.
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Information-Flow Analysis for Android

• Early efforts

� Commercial: AppScan Source (IBM),Fortify SCA (HP).

� Academic: SCanDroid, ScanDal, AndroidLeaks, CHEX,
LeakMiner, Trustdroid.

� Weaknesses: inaccurate analysis, imprecise Android API
model.

• FlowDroid (2014):

� Precise Context, Field, Object-sensitive and Lifecycle-aware

• EdgeMiner (2015):

� Add-on to Flowdroid to better treat callbacks and indirect
information flow transfers.

• DroidSafe (2015):

� Not flow-sensitive (FlowDroid is) but far more complete
model of Android runtime execution.

6



The Perils of App Coexistence

• Android encourages component reuse and inter-application
collaboration:

� Apps divided into components

� Exchange information and leverage existing services within
the app boundaries (ICC) and across applications (IPC)

◦ Intents

◦ Service binding

• Problem: potentially insecure information flows across apps:

� Confused deputy attacks

� Collusion attacks

� Communication via covert channels

• Plus other risks: activity hijacking, intent spoofing, ...

• Current risk assessment schemes based on examining apps in
isolation can only offer a limited vision of the actual risk

7



Extending info-flow analysis to app sets

• Epicc (2013): tool to resolve Intent destinations.

• IccTA (2014), DidFail (2014-15): FlowDroid + Epicc

• ApkCombiner (2015): Merges 2 apps replacing IAC by ICC
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Motivation and Overview

• Countering attacks that exploit inter-app communication:

� ICC / IPC firewalling

� Samsung KNOX container

� Virtualization (maybe soon)

• All require user-defined app segregation policies

� Security policy making is difficult and error prone

� User- and context-dependant policies

• Our work:

� Formalize adversarial model and extend risk scoring
functions to app sets

� Risk mitigation through compartmentation, with policies
formulated as solutions to an optimization problem

� Online (free) compartmentation service

� WIP: extension using risk metrics derived from joint
info-flow analysis.
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Extending Risk Scoring to App Sets

• Feature-based risk scores

� An app a is modeled as a feature set

a 7→ φa = {f1, . . . , fM}

� Each fi is a risk factor (generally permissions)

� Risk factors can also be contextual and time dependant

a(t) 7→ φa(t) = {f1, . . . , fM , c1(t), . . . , cL(t)}

• Risk scoring function: ρ(a) ≥ 0

� Generally monotonic:

φa ⊆ φb ⇒ ρ(a) ≤ ρ(b)

(i.e., adding risk factors does not decrease risk)
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Extending Risk Scoring to App Sets

• The Unrestricted Collusion (UC) model

� Worst-case scenario:

Apps can communicate with each other without restrictions.
Thus, if one of them has been granted permission to access
a particular resource, all of them can also access that
resource via the first app.

• Risk scoring

S = {a1, . . . ,aN} 7→ φS =

N⋃
i=1

φai

and
ρ(S) = ρ(φS)
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An Empirical Analysis of Colocation Risk

• Quantified risk of collusion for different number of apps:

� Sets of N ∈ {10, 20, 30, 40, 50} colluding apps

� Measure the risk of the entire group
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Optimal Risk Compartmentation Policies

• Compartmentation policies as in the classical Brewer-Nash model,
but using quantified risk measures instead of predefined
mandatory controls (minimal user intervention).

• Two compartmentation problems. Intuitively:

• RISKPACK:

� It’s feasible to define a notion of maximum tolerable
risk—an upper bound for the risk each compartment can
assume. All compartments have the same risk capacity.

� No limit to the number of compartments.

• MINRISK:

� Fixed, and often small, number of compartments.

� The semantics of the risk scoring function are unclear, so
the focus is not on the risk value in absolute terms but
rather on minimizing it.

• Online vs offline compartmentation.
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Optimal Risk Compartmentation Policies

Definition (RISKPACK). Given:

• a set A of N apps

• for each S ⊆ A a risk measure ρ(S) ∈ Z+

• a finite set K of N compartments, and

• a maximum tolerable risk τ ∈ Z+ common to all compartments
k ∈ K,

the RISKPACK problem is to find an integer number of
compartments Z and a Z-partition S1, . . . ,SZ of the set A such
that ρ(Si) ≤ τ for all i = 1, . . . , Z. A solution is said to be optimal if
it has a minimal Z.
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Optimal Risk Compartmentation Policies

Definition (RISKMIN). Given:

• a set A of N apps

• for each S ⊆ A a risk measure ρ(S) ∈ Z+, and

• a finite set K of M ≤ N compartments,

the RISKMIN problem is to find a Z-partition S1, . . . ,SZ of the set

A such that
Z∑

i=1

ρ(Si) is minimal. Other target functions are

possible, for example minimizing maxi ρ(Si).
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Complexity

• Both RISKPACK and RISKMIN are NP-hard.

• RISKPACK is a variant of the Bin-Packing Problem (BPP)

� One important difference: while in BPP
size({a, b}) = size(a) + size(b), in RISKPACK there might
not be an straightforward relationship between ρ({a, b}) and
ρ(a) and ρ(b).

� If ρ is sublinear, RISKPACK reduces to the recently
proposed VM-Packing problem

• RISKMIN is a variant of the Multiple Subset Sum (MSS) problem
and can be also seen as a Multiple Knapsack Problem (MKP).

� Again, the key difference is that risk aggregation by the
scoring function might not be additive.
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Heuristics

• Developed for BPP and MSS/MKP and adapted to RISKPACK
and RISKMIN

Heuristic Description

R
IS

K
P

A
C

K

NF
Next Fit. When processing the next app, see if it fits in the same
compartment as the last app. Start a new empty compartment if
it does not.

FF
First Fit. As NF but rather than checking just the last compart-
ment, check all previous compartments.

BF
Best Fit. Place the app in the tightest compartment, i.e., in the
spot so that the smallest residual risk is left.

CF
Cheapest Fit. Place the app in the compartment in which it
causes the lowest risk increment.

FFD
First Fit Decreasing. Offline analog of FF. Sort the apps in de-
creasing order of risk and then apply FF.

BFD
Best Fit Decreasing. Offline analog of BF. Sort the apps in de-
creasing order of risk and then apply BF.

CFD
Cheapest Fit Decreasing. Offline analog of CF. Sort the apps in
decreasing order of risk and then apply CFD.
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Heuristics

Heuristic Description

R
IS

K
M

IN

HC

Hill Climbing. Start with a random assignment of apps to compartments. Pick one
app randomly and move it to a randomly chosen compartment. Keep it there if
the overall risk decreases; otherwise undo the move. Repeat until no improvement
is achieved for L consecutive moves.

MR Minimum Risk. Place the app in the compartment with minimum risk.

B?
Best Risk. Place the app in an empty compartment, if any. Otherwise, place it in
a compartment in which it causes no risk increment, if possible. Otherwise, place
it where it causes the highest risk increment.

CR?
Cheapest Risk. Place the app in an empty compartment, if any. Otherwise, place
it in a compartment in which it causes no risk increment, if possible. Otherwise,
place it where it causes the lowest risk increment.

MRD?
Minimum Risk Decreasing. Place the app in an empty compartment, if any.
Otherwise, place it in a compartment in which it causes no risk increment, if
possible. Otherwise, place it in the compartment with lowest risk.

BRD? Best Risk Decreasing?. Offline analog of B?. Sort the apps in decreasing order
and then apply B?.

CRD? Cheapest Risk Decreasing?. Offline analog of C?. Sort the apps in decreasing
order and then apply C?.
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Experimentation

• RISKPACK

� Computed number of compartments required to fit
N ∈ {10, 30, 50} apps given τ ∈ [0, 1].

• RISKMIN

� Computed the risk (the higher across all compartments)
obtained to fit N ∈ {10, 30, 50} apps given a fixed number
of compartments.

• Only non-malicious apps.

• Each experiment averaged over 1000 runs.

• Only RSS and DroidRisk. (RS behaves very similarly to RSS.)
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Experimentation: RISKPACK
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Experimentation: RISKMIN
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DroidSack: An Online Compartmentation Service

• Implements heuristics solutions to user-defined RISKPACK and
RISKMIN instances.

• Service exposed through a REST HTTP-based API:

� GET RISKPACK

� GET RISKMIN

• Currently apps are provided through their full names in the Google
Play market.

• Solutions are returned as JSON objects.

• Freely available at:

http://www.seg.inf.uc3m.es/DroidSack
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Concluding Remarks

• App collusion via Internet is deliberately not considered.

• Dynamic reallocation policies (e.g., context driven or after
installing new app / updating).

• Restricted compartmentation:

� Mutually exclusive apps. Subsets of apps that, either
because of external policy or personal privacy preferences,
should not coexist in the same compartment.

� Category segregation. Akin to apps but with categories.

� User-defined groups, i.e., personal categories.

• Risk factors other than permisions, particularly info flow analysis
(DidFail, ApkCombiner).
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Q & A

Thank you!
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